Parameterised sigmoid and reLU hidden activation functions for DNN acoustic modelling
نویسندگان
چکیده
The form of hidden activation functions has been always an important issue in deep neural network (DNN) design. The most common choices for acoustic modelling are the standard Sigmoid and rectified linear unit (ReLU), which are normally used with fixed function shapes and no adaptive parameters. Recently, there have been several papers that have studied the use of parameterised activation functions for both computer vision and speaker adaptation tasks. In this paper, we investigate generalised forms of both Sigmoid and ReLU with learnable parameters, as well as their integration with the standard DNN acoustic model training process. Experiments using conversational telephone speech (CTS) Mandarin data, result in an average of 3.4% and 2.0% relative word error rate (WER) reduction with Sigmoid and ReLU parameterisations.
منابع مشابه
Understanding Deep Neural Networks with Rectified Linear Units
In this paper we investigate the family of functions representable by deep neural networks (DNN) with rectified linear units (ReLU). We give an algorithm to train a ReLU DNN with one hidden layer to global optimality with runtime polynomial in the data size albeit exponential in the input dimension. Further, we improve on the known lower bounds on size (from exponential to super exponential) fo...
متن کاملAcoustic modeling with deep neural networks using raw time signal for LVCSR
In this paper we investigate how much feature extraction is required by a deep neural network (DNN) based acoustic model for automatic speech recognition (ASR). We decompose the feature extraction pipeline of a state-of-the-art ASR system step by step and evaluate acoustic models trained on standard MFCC features, critical band energies (CRBE), FFT magnitude spectrum and even on the raw time si...
متن کاملE-swish: Adjusting Activations to Different Network Depths
Activation functions have a notorious impact on neural networks on both training and testing the models against the desired problem. Currently, the most used activation function is the Rectified Linear Unit (ReLU). This paper introduces a new and novel activation function, closely related with the new activation Swish = x ∗ sigmoid(x) (Ramachandran et al., 2017) [14] which generalizes it. We ca...
متن کاملارزیابی کارایی مدل شبکه عصبی مصنوعی برای ریزمقیاس نمایی و پیشبینی بلندمدت متغیرهای اقلیمی
Atmosphere–ocean coupled global climate models (GCMs) are the main source to simulate the climate of the earth climate. The computational grid of the GCMs is coarse and so, they are unable to provide reliable information for hydrological modelling. To eliminate such limitations, the downscaling methods are used. The present study is focused on simulating the impact of climate change on the beha...
متن کاملRevise Saturated Activation Functions
In this paper, we revise two commonly used saturated functions, the logistic sigmoid and the hyperbolic tangent (tanh). We point out that, besides the well-known non-zero centered property, slope of the activation function near the origin is another possible reason making training deep networks with the logistic function difficult to train. We demonstrate that, with proper rescaling, the logist...
متن کامل